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ON THE BEHAVIOUR OF SOLUTIONS OF DEGENERATE NONLINEAR
ELLIPTIC EQUATIONS

The behaviour of singular solution u(zx) of quasilinear elliptic equation
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i
> o (2:52) ~lir*u=0. zeBO\ (0} )

is studied. We assume Caratheodory’s conditions for coefficients a;(x, &) and inequalities

3 4@, )& 2 mlel P, lai(z,€)| < wolal |l

i=1

with positive constants vy, 12, 0 € (p—n,n(p—1)),1 <p<n.
Following results are established:
1) the boundedness of the solution u(z) of the equation (1) under conditions ¢ > 1,

y 1 i | -
lu(z)| < Mije|"P* for O<|z|<z, P=22E27 550
2 p-1
2) the estimate
=) 1 p—
lu(z)] < Mslz| ™% for O0<|z| <35, @= gl LD

3) the removability of each isolated singularity of the solution of the equation (1) if @ < P.
These assertions are generalized well-known results of V.A.Kondratiev and E.M.Landis established for
o = 0 for the equation (1) with p = 2 and linear principal part.

1. We study the behaviour of a singular solution u(z) of the following quasilinear elliptic
equation:

3 2o (2 2) <im0, zea=BON\©) W

where B = B,(0) is the ball of radius 1 with a center 0, and ¢ is a real positive number
precised later.

We assume that the coefficients a;(z,&) are Caratheodory’s functions and that they
satisfy the following ellipticity condition:

Zm(n@& > 11 |x||€P (2)
i=1

and the growth condition:
|ai(z,€)| < valz|7|EfP~ (3)

for (z,€) € @ x R* and with positive constants vy, v, and numbers o, p such that

p—n<o<np-—1),l1<p<n (4)



V.Cataldo, T.M.Skrypnik

A function u(z) € WLP(Q) N LY () is called a solution of the equation (1) in B\ {0} if

loe loc

for an arbitrary function ¢ € W'P(B) N L?(B) that is equal to zero near B U {0} we have

fz 6?.: &y ; f|u|q_2upd-x=0. (5)

Q

We will say that the solution u(x) of the equation (1) in B\ {0} has at {0} removable
singularity if the integral identity (5) is true for an arbitrary function ¢ € W'?(B) N LY(B)
that is equal to zero near 9B.

Main Results of this paper are following Theorems.

THEOREM 1. Let u(z) be a solution of the equation (1) in B\ {0}. Assume that ¢ > 1, the

inequalities (2), (3) and the estimate

n—p+o
p—1

are satisfied for 0 < |z| < § with some positive numbers M,,d. Then there exists a positive

constant My such that the estimate

|u(z)| < My|z|~FH, P= (6)

. 1
lu(z)| <My 0<|z|< = (7)
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holds.
THEOREM 2. Assume that conditions (2), (3) are satisfied and ¢ > p. Let u(x) be a solution
of the equation (1) in B\ {0}. Then the estimate

lu(z)| < Ms|z|™®, 0< |z| <

(8)

b =

holds with Q = f’;@ and some positive constant Ms.

THEOREM 3. Assume that conditions (2), (3) are satisfied and q¢ > m;—"—? Then for an
arbitrary solution u(z) in B\ {0} the singularity at {0} is removable.

Note that V.A. Kondratiev and E.M. Landis in [1] established analogous result for linear
equation of type (1), that corresponds to p=2.0 = 0.

2. Proof of the Theorem 1. Let us substitute in (5) a test function
¢ =1+ ul) " uy?(@)n(z) ,0<a<l,

where ¥(z) = 1 in B%( ;0 Pt < e =0 outside B%(U), —g%‘ Ditgrnas) = 1
outside Bs,(0), 0 < n,(z) <1, n.(z) = 0 inside B,(0), < @, where r is enough small.
Using inequalities (2), 3) Young inequality and szmple calculations we obtain the

estimate
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The constant C; here and other constants C; in the proof of the Theorem 1 depend only
on vy, vy, n, p,o, M.

Now we want to pass to the limit when 7 — 0. The term of sum in right hand side of
(9) with a derivative of ¢ is estimated as following

oy |?

(1 + ful) ™ ul?|z|”

B\B:(0)

dz < Cp {14 rmro (555 Canl? (10)

The right-hand side of (10) is bounded for r — 0 if

n+o—[p+dp—1)p -
n+o—[p+é(p—1)]°
The second term of the right-hand side of (9) has the estimate
P
[ (14 fu)™ul? % |z dz < Cyrto= (5550 p=a)-, (12)

B\B,(0)

The last expression will go to zero when r — 0 if

this implies the condition on a:

R - L Tl 13)
oc+n—p—0o(p—1)

We choose a as in (13) with a < 1. By monotone convergence theorem applied to the
inequality (9) we obtain:

[a+tr |3

P a,[“l.

¥ (@)|zl7dz < C4 f 1+ lul)@lul? (52| Jolda. (14)
B

ox
Now we want to prove boundedness of u(z) in B. We shall use Moser iteration process. We
substitute in (5)

= (1+ [ule)' (1 + |u)up(@)ni(z) s> 0,020

where |u|x = min{|u(z)],k}, k >0, ¥(z),n (z) are the same functions as before.
After standard calculations we have the inequality

p
[+ a2 |3 v @naids <
B
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We pass to the limit in (15) if 7 — 0 and obtain

P
V¥ (z)|z|"dx <

0
[ b+ fulye |24
B

<Gy / (L+ ule) (1 + [ul) (L + |ul)Pyi?(2) o] da.

We will apply Moser method. We shall use embedding theorem

) ; £ p o+n
H;(Q, lz|”) C B L0 40" Yumiths 1< k& ST p

We apply the embedding theorem to the right hand side of (16) and we obtain

/ (1 + [ule) (1 + Ju])P~20*(2) 2| dz <
B

S C(-‘, Eﬂ.{ /(1 . Iuh)ﬁ-ﬂ—(a—p)(l—%).

B
K
L |u|)p—ws—?-—f’(z)dx} .
Now we can apply Moser method, which gives the inequality
max (1 + |u(z)|p)l < CT/(I + Julk)® (1 + |u])P~%|z| Yo P (z)dx
.TTEB%
B
with numbers [y, s such that [y > 0,50 > p.
We need to choose [; such that
[+ ooz < oy
B
or, equivalently we must choose [; from the condition

n+o— (%—5) (p—a+1l) > 0.

(16)

(17)

(19)

So we can choose positive [, if a satisfies the inequality (13). Now inequalities (18), (19)

imply a boundedness of u(x) in B L. This is the end of the proof of the theorem.

3. Proof of the Theorem 2. We introduce a function &,(z) such that &,(z) = 1 for

e
o

§ < |z < p, & () =0 outside of {2 < |z| < 2} and ‘6%;&".)

We substitute in (5) a test function

¢ = |u(@)]"Mulz) E(x)  r>1, s>p.
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Standard calculations lead to following estimate

f |2l |VulP|u(e) €5 () de + f ()| €8 () do <
0

8 1 o
T r+p—1 =
< Om/ (;) |21 |u(z)["* Efp P(a)dr.
Q
We recall now the weighted Sobolev embedding theorem (see [4])
1 CIRP | e | O 1 LR | C
—= [ oarar | <owp| [ IVePRlr | (21)
By (zo) By(zo)
= r+p—1 s=F
We apply this last inequality to the function ¢ = |u(x)| % & (x)
d e s=p Kp ey t ; Kp
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p TRnHAK
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Using the inequality (20) we get the estimate
&p
f ot (1u) 67 (@) do <
" (23)

Cus(r + 5 + p)2*®

3 1 rdp-1 2P
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Denote 7, = k'p+ 1 —p, 8; = (;;-’35 Tth)h: sk

c'

[ (2l u(e) [P (2)d

po'-i-n
Using these notations we can write the inequality (23) with r = r;, s = s; in following way
18 Ok I (24)
Iterating this inequality we obtain
C’
max [u(o)P < 2 f ol u(z)PEge? (@) (25)
2 {|T1‘(p p0+‘n

Now we use (20)(if r =75 =1 and s = sq) and we find

@@ /|sc| u(z) PERP () da. (26)

Q
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So, by using Young’s inequality and (26), we have

[lertu@Pe sy = [ 5% ue)Po @il gr@)ds <
0

0
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and then
max [u(z)f < — 2
£<la|<p T L

p a=r 4P

In the end we have

Cy
max |u(z)| < —=
%<|xé<p| @) < par

and the proof of the Theorem 2 is completed.

4. Proof of the Theorem 3. Theorems 1, 2 imply that an arbitrary solution of the

equation (1) in B\ {0} is bounded in B: if @ < P. It means the boundedness of the solution

u(zx) in B, for ¢ > %. For the proof of removability of a singularity of the solution u(z)

it is sufficient to substitute in (5) ¢(z) = ¥(z) n,(x) where ¥(z) € WH?(B) N LY(B) and is
equal to zero near 0B, n,(x) is the same function that was used in the proof of the Theorem
1. Then passing to the limit if 7 — 0 we obtain that u(z) is the solution of (1) in B. This is
the end of the proof of the Theorem 3.
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